
50 The Delphi Magazine Issue 32

Form Printing DOS-Style
by Paul Warren

I think we could be forgiven if we
had put our DOS tools and librar-

ies away and forgotten about them.
Delphi and Windows make those
old character-based apps look
pretty outdated. I even archived
my Borland Pascal code to tape.

Recently, though, I was asked to
add some features to a statistical
process control application called
SPC I wrote for DOS years ago.
Being an obliging fellow, I moved
Borland Pascal back to my hard
drive and set about my task.

I think I stared at the old IDE for a
good minute waiting for the form
designer to appear. When I finally
realized it wasn’t going to, I had a
mild anxiety attack. After another 5
minutes of browsing through basi-
cally comment-less code I decided
porting to Delphi was the only
answer.

Copying the user interface was
easy, just as you would expect.
Porting the statistical engine
wasn’t too hard either because I
had the foresight (or luck perhaps)
to write it as an object. Some minor
syntax changes and it worked well.

Printed output, unfortunately,
was another matter. Back when I
wrote SPC I used pre-drawn forms,
done with ASCII line drawing char-
acters, as templates. I inserted
data into the forms at runtime
based on an index of offsets into
the form. Finally, I copied the filled-
out form into a print stream.

Since the forms are fairly com-
plex (Figure 1 is a simple one!) I
didn’t feel like drawing them with
lots of MoveTo and LineTo com-
mands. After some thought I
decided that, except for the print
stream, this scheme could be made
to work in Delphi.

Form Files
In the context of this article a form
file is a text file which may or may
not make use of the extended ASCII
character set, ie those characters
above #128 used for line drawing. A
form file will have areas, fields if

you like, where you can insert data
prior to printing.

Under DOS, the ASCII character
set was almost certainly loaded in
your default code page; if you
wanted to use other character sets
you had to change the code page
explicitly.

Under Windows the situation is
different and rather obscure (at
least it is to me). For example,
according to the Windows help,
you should be able to construct a
font with the line drawing charac-
ters by changing the font character
set. Unfortunately this doesn’t
seem to work. Luckily there are
fonts which do have the extended
ASCII characters, for example MS

LineDraw and Terminal, which,
with a little care, make it possible
to create, view and print form files.

Creating Form Files
There are dedicated editors for
creating form files, for example
Formtool for DOS (IMSI software),
but I suspect these applications
are getting rare. If you don’t have
FormTool your Delphi editor will
work. You need to change the font
to Terminal or MS LineDraw and
enter the extended characters
with Alt-xxxx (where xxxx is the
key code). Alternatively, you can
use Windows Character Map.

➤ Figure 1



April 1998 The Delphi Magazine 51

type
PBuffer = ^TBuffer;
TBuffer = array[0..65200] of char;

var
Form: file;
Index: file of LongInt;
i: LongInt;
Buf: PBuffer;

begin
AssignFile(Form, 'LABELS.FRM');
Reset(Form, 1);
try
AssignFile(Index, 'LABELS.NDX');
Rewrite(Index);
GetMem(Buf, FileSize(Form));
try
BlockRead(Form, Buf^, FileSize(Form));
for i := 0 to FileSize(Form) do
if Buf^[i] = '@' then begin
Write(Index, i);
ListBox1.Items.Add(IntToStr(i));

end;
finally
FreeMem(Buf, FileSize(Form));
CloseFile(Index);

end;
finally
CloseFile(Form);

end;
end;

➤ Listing 1

var
i: LongInt;
j: integer;
F: TFileStream;
Index: file of LongInt;
S: string;

begin
AssignFile(Index, 'FILLSUM.NDX');
Reset(Index);
F := TFileStream.Create('FILLSUM.FRM', fmOpenWrite);
try
for j := 0 to FileSize(Index)-1 do begin
Read(Index, i);
F.Seek(i, 0);
case j of
0: S := Format('%-30s', [Edit1.Text]);
1: S := Format('%14s', [Edit2.Text]);
2: S := Format('%-10s', [DateToStr(Date)]);
3: S := Format('%-8s', ['N/A']);

else
S := Format('%10s', ['N/A']);

end;
F.Write(S[1], Length(S));

end;
finally
F.Free;
CloseFile(Index);

end;
end;

➤ Listing 2

Indexing Text Files
Once you have your form files you
have to create an index of the off-
sets where data is to be entered. In
its simplest form the index is a file
of LongInt with each entry repre-
senting a sequential offset into the
form file.

For this simplest case to work
you need to mark the locations
where data is to appear with a
character not used elsewhere in
the form. Generally an @ symbol
will be fine. Next, you need to read
the file, or page the file, into a
buffer and check each character.
When you find an @ character you
write the offset to the index file.
Listing 1 shows a crude routine
that performs this task.

Note that since this indexing
need only be done once I’m not too
concerned about speed.

Adding Data To The Form
Now that you have both a form file
and a list of offsets at which to
insert your data it’s pretty simple
to create a filled-in form. Listing 2
shows the code to enter data into
the form.

Keep in mind that in this simple
case you are responsible for for-
matting the data to the correct
length for each data field. You must
pad data that is too short in order
to erase previous data and you
must trim data that is too long.

There are more sophisticated
twists on this technique and I’m
sure you have already thought of
some. One thing that comes to
mind is to save both the offset
where the data is to be entered and
the length of the data in a file of
record structure. The trick here
would be to put multiple @ charac-
ters where the data is to go and
scan the file for the offset and
length before appending the
record to the file.

What I really wanted, though,
was a visual tool to index form files.
I felt this would be both quicker
and easier. A TMemo component
already has all the functionality
needed in the LoadFromFilemethod
and SelStart and SelLengthproper-
ties. All you need to do is load a
form file into the TMemo and high-
light the desired area for each data

var
F: TextFile;
i: integer;

begin
{...  read form file into Memo1  ...}
AssignPrn(F);
Rewrite(F);
try
for i := 0 to Memo1.Lines.Count-1 do
Writeln(F, Memo1.Lines[i]);

finally
CloseFile(F);

end;
end;

➤ Listing 3

field and write the properties to
the index file. I have provided both
a visual indexing tool and a demo
form printing project on this
month’s disk.

Printing The Form
The last step is printing the form.
This is easy. Using the Printer
object you simply use writeln()
statements to print the form.



52 The Delphi Magazine Issue 32

Listing 3 is a code snippet showing
the general idea. The only thing to
keep in mind is whether your
chosen font is supported by the
printer.

I don’t know if I’m alone in this,
but I don’t completely understand
Windows font management. As
near as I can figure, it goes like this.
If the font you are trying to send to
the printer is a raster font, for
example Terminal, then if your
printer supports Terminal every-
thing is fine. If your printer doesn’t
support Terminal then Windows
substitutes a font of its choice.
Unfortunately the character set
will not usually be the set we want.

If the font you are using is a True
Type font, for example MS Line-
Draw, then if your printer directly
supports MS LineDraw everything
is again fine. If your printer doesn’t
support MS LineDraw then
Windows will either download a
bitmap font copy of MS LineDraw
or a graphic representation of MS
LineDraw, depending on a check-
box set in your printer’s property
sheet. In either case, the output

will be correct, it will just print a
whole lot slower.

Another point to be aware of is
that MS LineDraw looks poor on
screen: there are unsightly gaps
between rows. The printed output,
however, is fine. Why this is I don’t
know.

Based on these observations I
decided to check for the presence
of Terminal and MS LineDraw
during installation. If they are not
present they should be installed
(you might want to read the article
by Stewart McSporran in Issue 18
for a discussion of font loading
techniques). I then display my pre-
view ouput on screen in Terminal.

My program iterates Printer.
Fonts to see if Terminal is sup-
ported. If it is then I output in Ter-
minal, if not I output in MS
LineDraw. This way I seem to be
able to support most systems. For
example, I have successfully used
this form printing method on a
Canon BJC 4200, an HP Laserjet II,
an HP Laserjet 5L and a Panasonic
KXP 1123 from Windows 3.1, 3.11
and Win95.

Conclusion
Delphi provides the very flexible
TPrinter object and there are
many fine third-party tools for
printing. There are times, though,
when an alternative method is
desirable. Printing a form is one of
these, especially when the form is
designed for manual data collec-
tion. Why draw an identical form
every time your application needs
to output to the printer? It makes
more sense to create the form
once and just copy data into it.

If there is one thing I learned
from porting this application to
Delphi it is that DOS may be dead
as far as Microsoft is concerned
but the programming techniques
are often just as valid under Win-
dows. My DOS code is now staying
on my hard drive until I have
distilled every last gem out of it.

Paul Warren runs HomeGrown
Software Development in Lang-
ley, British Columbia, Canada and
can be contacted by email at
hg_soft@haven.uniserve.com


	Form Files
	Creating Form Files
	Indexing Text Files
	Adding Data To The Form
	Printing The Form
	Conclusion

